
Properties of Prisms:

- 1. The bases are
- 2. The rectangular faces that are not bases are called
- 3. The lateral faces intersect at the _____ which are

right hexagonal prism

- 4. An altitude is _____
- 5. In a right prism, ______.

oblique hexagonal prism In an oblique prism ______.

The lateral area (LA or L) is ______.

Key concept:

The surface area (TA or T) is _____.

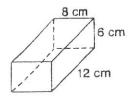
Key concept:

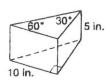
The volume (V) is ______.

Key concept: ______

Examples:

a) LA = _____


b) LA = ____


TA = _____

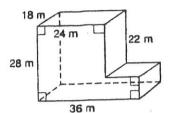
TA =

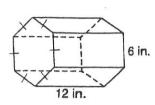
V =

V =

Geometry: LA, TA, V of prisms

c) LA = _____


TA = ____

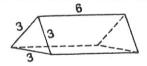

V = ____

d) LA = ____

TA = _____

V = ____

e) LA = _____

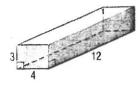

TA = ____

V = _____

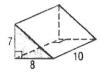
f) LA = ____

TA = _____

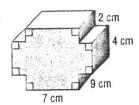
V = _____



Example: The lateral area of a rectangular prism is 156 square inches. What are the possible whole number dimensions of the prism if the height is 13 inches?

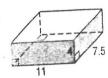

Example: The volume of a rectangular prism is 198 cubic centimeters, the length is 11 centimeters, and the height is 9 centimeters. Find the width.

FIND LA, TA, and V for all figures in EXACT FORM!

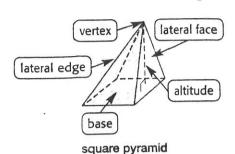

6.

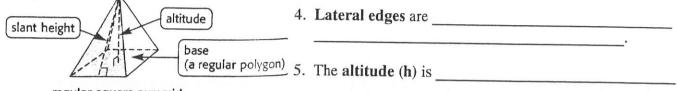
8

10.


12. The surface area of a cube is 864 square inches. Find the length of the lateral edge of the cube.

14. The lateral area of a rectangular prism is 156 square inches. What are the possible whole-number dimensions of the prism if the height is 13 inches?

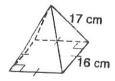

16

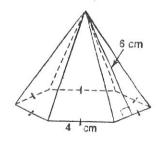

18.

Properties of Regular Pyramids:

- 1. All the faces, except the base, _____
- 2. The base is ______.
- 3. Lateral faces are _____ and always form ______.
- 4. The **slant height** (*l*) is ______.

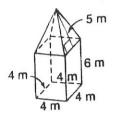
4. Lateral edges are _____


regular square pyramid


Key concept: Lateral Area (LA or L):

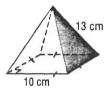
Key concept: Surface area (TA or T):

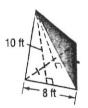
Key concept: Volume (V):


Examples:

Geometry: Surface Area and Volume of Pyramids

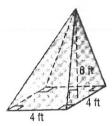
- c) This shape is a composite of a cube and square pyramid. The base of the solid is the base of the cube. Find:
- a) the height (h)
- b) LA _____
- c) TA _____
- d) V _____

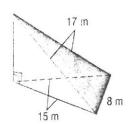



GEOMETRY HOMEWORK Pyramids Sections 12.5 and 13.2

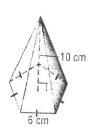
NAME _____

1. Find the LA and TA of each regular pyramid.





2. Find the volume of each pyramid.



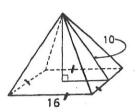
c) V = ____

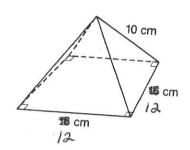
d) V = ____

(round to nearest tenth)

HOMEWORK

Pyramids

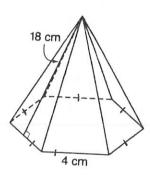

- 3. Find the LA, TA, and V of each regular pyramid.
- a) LA =


TA = _____

b) LA = ____

TA =

V = ____



c) LA = ____

TA = ____

V = _____

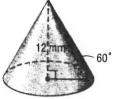
4. This solid is a composite of a cube and square pyramid. The base of the solid is the base of the cube. Find:

a) the height = _____

b) LA = _____

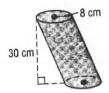
c) TA = ____

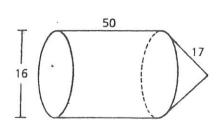
d) V = _____


	GEOMETRY	and the second		NAME
base	(Sections 12.4, 1			MOD
J	Properties of Cy		TTI I	
	axis	1.	The bases are	
altitude	base	2.	The axis is	
right o	cylinder	3.	In a right cylinder,	
	axis	altitude	Otherwise, the cyli	nder is
			The length of the a	ltitude is the
	oblique cyline	161	5	
κ				r relate to the formulas we use for and B is
	LA =		=	
	TA =		=	
	V =	=		
The axis is als an altitude.	h slam	t height 2.	The axis is The segment with o	and the one endpoint at the vertex and also
	right cone V			e base is called the
	axis	altitude	called the	g the vertex to the edge of the base is
		4.	In a right cone	e is
	oblique cor	ne	Otherwise, the cone	e is
	Key concept: The regular pyramid e	e LA, TA, and except P means	V of a right cone rel	ate to the formulas we use for a and B is
	LA =		=	
	TA =		=	
	V =		=	

GEOMETRY Cylinders and Cones

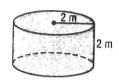
Examples:


$$TA =$$


c) Find the volume of each oblique cone or cylinder.

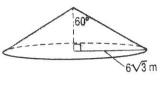
d) Find the radius of the base of a cylinder with surface area $48\,\pi$ square centimeters and height 5 centimeters.

e) Find the total surface area and volume of the shape below:

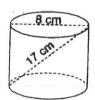

GEOMETRY HOMEWORK (Sections 12.4, 12.6, 13.1, 13.2)

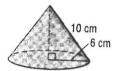
Cylinders and Cones

NAME _____ MOD

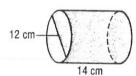

1. FIND the LA, TA, and V of each Right Cylinder or Right Cone in EXACT FORM.

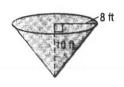
a) LA =

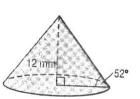



b) LA = ____

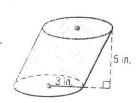
V = ____




c) LA = ____


e) LA =

2. Find the LA, TA, and V of this right cone rounded to nearest tenth.

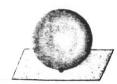

LA = TA = V =

3. Find the V of each oblique cone or cylinder in EXACT FORM.

a) V = ____

4. Find the radius of the base of a right cylinder whose total surface area is 140π square foot and whose height is 9 feet.

GEOMETRY	Sections 12.7 a	and 13.3
Surface Area ar	nd Volume of Sp	pheres


examples:

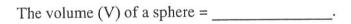
NAME	
MOD	

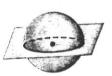
Properties	of	Sp	her	es
------------	----	----	-----	----

- 2) chord: _____examples:
- 3) diameter: _____example: _____

The intersection of a plane and a sphere can be a _____ or a _____.

When a plane intersects a sphere so that it contains the center of the sphere, the intersection is called a ________. (its center and radii are the same as the sphere) Each great circle separates a sphere into two congruent halves, each called a _______.

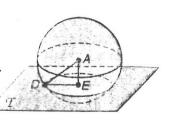



a point

a circle

Key concept:

The surface area (TA) of a sphere = _____.



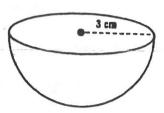
a great circle

Examples:

- 1) If AE = 8 and DE = 15, find the radius of sphere. (A is the center) r =
- 2) If the radius of the sphere is 12 units and the radius of O E is 6 units, find AE. $AE = \underline{\hspace{1cm}}$

- 3. Find the surface area (TA) and volume (V) of each sphere in exact form.
 - a) diameter = 10 in.

b) radius =
$$2\sqrt{2}$$
 ft.


TA = _____ V = ____ V = ____ V = ____

GEOMETRY Spheres 12.7 and 13.3

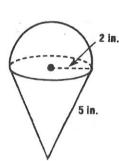
4. Find the surface area (TA) and volume (V) of the hemisphere in exact form.

TA = ____

V = ____

5. Find the TA of a sphere with the area of a great circle approximately 18.1 square meters. Round to the nearest tenth.

TA = ____


6. The surface area of a sphere is 784π square inches. Find its volume in exact form.

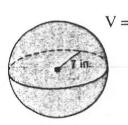
V = ____

7. Find the total surface area on the volume of the solid in exact form.

TA = ____

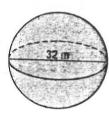
V = ____

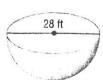
1. In the figure, A is the center of the sphere, and plane $\mathcal F$ intersects the sphere in OE.


- a) If AE = 5 and DE = 12, find AD.
- b) If the radius of the sphere is 18 units and the radius of O E is 17 units, find AE.

2. Find the surface area (TA) and volume (V) of each sphere or hemisphere in exact form.

- a) TA = _____
 - b) TA = ____




c) a sphere with radius $6\sqrt{3}$ cm.

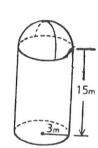
d) TA = _____

e) TA = ____

3. Find the total surface area of a sphere with great circle 28.6 inches.

4. Find the surface area and volume of a hemisphere with the circumference of a great circle 8π centimeters. TA =______ V =______

5. If a golf ball has a diameter of 4.3 centimeters and a tennis ball has a diameter of 6.9 centimeters, find the difference between the volumes of the two balls. (round to the nearest tenth)


6. Find the exact volume of a hemisphere whose surface area is 18.75π square meters.

V = ____

- 7. An NCAA basketball has a radius of $4\frac{3}{4}$ inches. Find the surface area to the nearest tenth.
- 8. Find the total surface area and volume of the solid in exact form.

TA = ____

V = ____

GEOMETRY HOMEWORK #2 Spheres NAME
1. Given a cone and a hemisphere as marked. Find the total surface area and the volume of the solid in exact form.
TA =
V =
2. Find the total surface area and volume of the solid in exact form.
TA =
V =
3. A plastic bowl is in the shape of a cylinder with a hemisphere cut out. What is the volume of plastic used to make the bowl? (Hint: subtract the volume of the hemisphere from the volume of the cylinder) Give both the exact answer and the answer rounded to the nearest tenth.
exact volume =
rounded volume =
4. Engineering students designed an enlarged external fuel tank for a space shuttle as part of an assignment.
a) What is the exact volume of the entire tank? What is the volume rounded to the nearest cubic meter?

b) If the students plan to paint the fuel tank, determine the exact amount of surface area

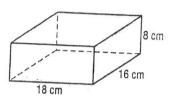
the students must paint. ______ What is the total surface area rounded to the nearest square meter? ______

HOMEWORK #2 Spheres (12.7 and 13.3) 5. A sphere is inscribed in a cube whose sides are 12 cm. a) Find the exact surface area of the sphere. b) Find the exact volume of the sphere. c) Find the amount of space outside the sphere but inside the cube. 6. Compare the volumes of a sphere with a radius of 5 inches and a cone with a height of 20 inches and a base with a diameter of 10 inches. 7. Suppose a sugar cone is 10 centimeters deep and has a diameter of 4 centimeters. A spherical scoop of ice cream with a diameter of 4 centimeters rests on the top of the cone. a) If all the ice cream melts into the cone, will the cone overflow? Explain. b) If the cone does not overflow, what percent of the cone will be filled?

8. If the radius of a sphere is increased from 3 units to 5 units, what percent would the volume of the smaller sphere be of the volume of the larger sphere?

GEOMETRY REVIEW PROBLEMS: LA, TA, V

NAME _____

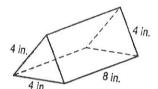

ALL WORK MUST BE SHOWN FOR CREDIT. LEAVE ALL ANSWERS AS EXACT VALUES. (leave π or $\sqrt{}$ in your answers)

FIND LATERAL AREA (LA), TOTAL AREA (TA) and VOLUME (V) for each right prism, right cylinder, regular pyramid, or right cone.

1. LA = ____

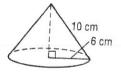
2. LA = ____

TA = ____


V = ____

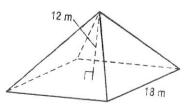
3. LA = ____

TA = ____


V = _____

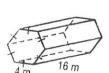
4. LA = ____

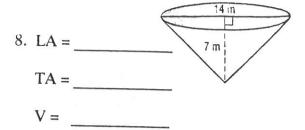
TA =


V = ____

5. LA = ____

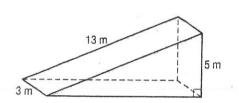
TA =

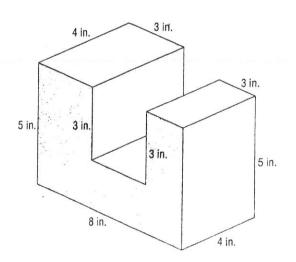

V = ____



6. LA = ____

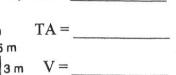
 $\Gamma A =$

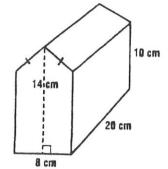

V =



9. LA =	
TA =	
V -	

V = _____

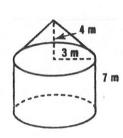

GEOMETRY


(Prisms, Pyramids, Cylinders, Cones)

NAME _____

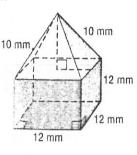
- 1. Find the LA, TA, and V of each prism.
- a) LA = _______5 m

 TA = _______3
- b) LA = _____

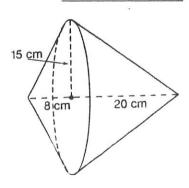


2. Find the total surface area and volume of each combined solid in EXACT FORM.

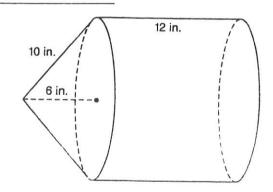
10 m


a) TA = _____

V = ____

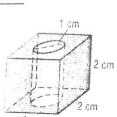

b) TA = ____

V = ____

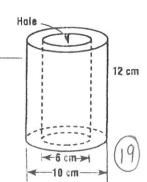

c) TA =

V =

d) TA =


T7 __

3. Find the volume of each solid in both EXACT FORM and ROUNDED to the NEAREST CENTIMETER.


a) EXACT = _____

rounded = _____

b) EXACT = ____

rounded = ____

Surface Area and Volume Formulas

PRISMS:

L = Ph

T = L + 2B

V = Bh

CYLINDERS:

 $L = 2\pi rh$

 $T = L + 2\pi r^2$

 $V = \pi r^2 h$

PYRAMIDS:

 $L = \frac{1}{2}P\ell$

T = L + B

 $V = \frac{1}{3}Bh$

CONES:

 $L = \pi r \ell$

 $T = L + \pi r^2$

 $V = \frac{1}{3}\pi r^2 h$

SPHERES:

 $T = 4 \pi r^2$

 $V = \frac{4}{3}\pi r^3$